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ABSTRACT

This report traces the development of a differential
correction theory for lunar and space probes. To overcome the

singularities inherent in differential processes with conventional
two-body descriptiones cf the path, =25 the eccentricity passes
through unity in either the parabolic or rectilinear sense, a uni-
fied formulation of the two-body equations was developed. The

differential correction procedure is based upon an ephemeris, inte-

grated in Encke form by special perturbations, and upon differential

expressions derived from the unified two-body equations. The report
includes experimentation with simulated range, range-rate, azimuth,
altitude, right ascension and/or declination data to evaluate the
performance of the resulting IBM 709 program.
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SECTION 1
INTRODUCTION

Under an amendment to contract AF19(604)-5885,
Aeronutronic has undertaken the development of a differential
correction program for geocentric orbits of medium to high
eccentricity, including lunar probes. Orbits of interest in-
clude the parabolic, elliptic, hyperbolic, and rectilinear
forms, and an orbit theory which was applicable at once to all
of these forms, without the singularities normally assoclated
with the transition between these, was sought. This report
discloses the development of a unified orbit theory especially
adapted to machine computation; included are the necessary
differential relationships and details of the Encke perturbatio.
method., ¥

* The proposal to employ a unified formulation of the two-body
equations, and the major portion of the development thereof,

are due to Samuel Herrick. Others on the staff of Aeronutronic

who participated in this development include Jeannine Arsenault,

R. H. Gersten, G. Matlin, C. Tross, C. T. Van Sant, G. B. Westrom,

and L. G. Walters.
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SECTION 2

TECHNICAL APPROACH

The Keplerian or two-body orbit is the basis for the
perturbation methods of orbit integration and for the differential
expressions required for orbit correction. In the perturbation
method, the Keplerian path is employed as a reference path, and
only the non two-body accelerations (or "perturbations') need be
integrated to define the motion. Differential expressions involve
the determination of linear cause-and-effect relationships between
observation and orbit, and require a description of the orbit free
of singularities in the region of interest. In both the perturbation
method and differential correction use of other than two-body (or
nearly two-body) form, such as position and velocity, severely limits
the computational efficiency.

A review of the two-body orbit description betrays two
serious singularities in the region of interest. First is the
transition from ellipse to parabola to hyperbola as the eccentricity
passes through unity and the semi-major axis becomes infinite. This
region is described by three different sets of formulae, none of
which is valid in this entire region. The situation is similar to
the engineer's description of damped harmonic motion, wherein three
mathematical descriptions cover the undamped, critically damped,
and overdamped cases. A more subtle singularity occurs when the
eccentricity passes through unity but the semi-major axis remains
finite. The two-body orbits are degenerate forms of the ellipse
and hyperbola, but the path is confined to a rectilinear path and
a description which involves the orientation of the orbit plane fails.
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The most familiar description of two-body motion is in
terms of the six alements:

a semi-major axis

e eccentricity

T time of perigee passage
i inclination

Q

longitude of the ascending node

@ argument of perigee

This set of elements embodies the following singularities:

1. For zero eccentricity (i.e., the circular orbit)
wis indeterminate, and the anomalies used to describe position
in the orbit plane have an indeterminate origin.

2. For zero inclination (i.e., the equatorial orbit), the
longitude of the node is indeterminate, and the argument of perigee
has an indeterminate origin.

3. For rectilinear motion, the orientation of the orbit

plane is undefined; consequently, both the longitude of the node and
the inclination are indeterminate.

4. For nearly parabolic motion, the equations for ellipse
and hyperbola are singular for unit eccentricity, whereas the para-
bolic equations are invalid for non-unit eccentricity.

For the latter two reasons a description of the two-body motion by
these familiar elements must be abandoned, and an alternate set of
parameters chosen for this study. Incidentally, Aeronutronic has
developed descriptions which also overcome singularities of the first
two types; results of this research are published elsewhere.*

= 1
See, for example, Aeronutronic publication U-880.



The development of the orbit theory is given in the
following sections. These include the basis for parameter selection,
the Encke ephemeris formulation in terms of these parameters, the
differential expressions for orbit correction, and the geometric

transformations required for the utilization of topocentric obser-
vation residuals.

2.1 SELECTION OF PARAMETERS

Singularities of the types noted above arise from the
parameters employed to describe the two-body orbit. This section
will introduce a set of six parameters which removes all singularities
save that for zero eccentricity from the theory, thereby unifying

the separate descriptions heretofore required in the vicinity of unity
eccentricity*.

To provide continuity from the elliptic to the hyperbolic
region, including the parabolic (e = 1, infinite a) and rectilinear
(e = 1, finite a) cases, it is necessary to adopt a uniform concept
of mean motion n, ordinarily defined by:

n, = k' (a)h3/2 elliptic case
By = k'~ parabolic case
n, = k' Vi (-a)"3/2 hyperbolic case

In the following, the parabolic definition for mean daily motion will
be adopted for all three cases, and the remaining two-body equations
will be adjusted accordingly. From this procedure evolves a set of
two-body equations identical for the elliptic, paraboiic, rectilinear,
and hyperbolic cases, with no singularities as the eccentricity passes
through unity.

e

"Parallel research undertaken by Dr. Samuel Herrick of Aeronutronic
has lead to an alternate development in terms of closed form f and g
series expressions which is valid for all eccentricities, including zero,
and all inclinations. Further development of this completely unified
theory is continuing; the development of both a variation-of-parameters
theory and of differential expressions for orbit correction will be pursued.



Beginning with the parabolic definition of mean daily
motion, designated n,* the mean anomaly is related to time by

~ ~ ~
M-M =n (c-co)

~
where ‘the usual elliptic definition of M is a e M. Kepler's equation,

in elliptic form, is written

MaE-es8inE ze (E - sin E) + (l-e) E

or

~ ~ ~

Ma a3/2 M =zelU4qX
where, by definition,

a A 3

- 2 el PPEY

23 T X
a‘s—x"-z'('--i- x T oWl o

3k a 5! a2- 7

~
The function U is derived from the (E-sin E) series; for negative a
(hyperbolic case) this series may be derived from (sinh F - F) series.
For infinite a, (parabola), the M form for Kepler's equation reduces
to the familiar Barker's equation for the parabola. Thus the single
form is adequate for all conics.

In this unified development, the tilde ( ™~ ) symbol will be used
to denote quantities whose definitions differ by virtue of the unification
process, from familiar quantities {n the conventional two-body theory.
This comment does not apply to the usage in Section 2.4, where the tilde

symbol is used to distinguish between equatorial and horizon coordinates
of the unit vector triad L, A and D.




The position vector r is readily related to the above
quantities through

Eoeg? +yy @

To avoid the indeterminate nacure of Q for the rectilinear case, where
the semi-latus rectum p = a (l-ez) is zgro and the orbit degenerates
to a single line along P, a vector Q #Vp Q is introduced such that

~
£ - xwg + -L g.

Ve

The coefficients are

Xy = @ (cos E - e) = a (l-e) - a (l-cos E)

~y
z. q'=Ie
~ ~o ~
~ XZ 4 x6
where C = - —— I-—z— Sp S
2% a4 a 6!
Yo -

Note that the elliptic expressions above, expressed in terms of
circular functions, become hyperbolic functions for negative a,
typical of the formulae for the hyperbola. The velocity expression
I is
. ]
b sdid v B
P



where
e ~ g
%:--%sinE:-J-—rL(x-%U)
%:ff—- cosE:i—rE- (1-%8)
P

The unified theory presented here lends itself to automatic machine
calculation, wheve transcendental functions are routinely computed
from their Jaylor series representations; on the other hand, lack of
tables for U and ¢ in terms of X and a~l will discourage hand computa-
tion.

The parameters which suggest themselves for representation
of all orbits (save zero eccentricity; note the usage of P) are

~

My,

~

AL, G,

The previous development indicates the procedure for translating from
parameters to position and velocity. The inverse transformation from
position and velocity to these parameters follows:

. ~N 1 ~
Given r, r, and t, to obtain M, e’ P and Q:

H
H
n

In

.

2
= ép.— (vis -~ viva integral)

o fr=

"N

Compute i and q: =

p-.=(1:2 62 -1:2 i‘z) /U

22=1-p/8
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q = p/(l + e)

3=§(r-q)

é\‘= ri'/e@

% 1 ] Y 1 & b

Compute P and Q: 2=[;(1-;C)] E-[ﬁts] 3

419 1 ¥ b

QArSl z4 (g -6 ) ¢

& > 7

Compute'iand M:* '§=x-§;-—! +'§2—.—! "§3T7_:

avn ADXe X X

U = " e ] + ;277: = Holo

9
|
%

hy

oy
Compute M,:

2.2 ENCKE EPHEMERIS PROGRAM

The numerical integration of the perturbative accelerations,

PN

(and of the total acceleration in Cowell's method), is designated as
"special perturbations'. Factors to be considered in an orbit theory
based on speclal perturbations include: what is to be integrated numer-
ically, the choice of reference orbit, and the choice of the independent
variable. 1In addition, the type of numerical integration procedure,
e.:.,Adams-Bashforth second-difference, second-sum Runge-Kutta, etc.,
must also be considered.

The special perturbations approach is particularly well

suited to space trajectories which depart only slightly from orbits
for which an analytical solution exists, e.g., a lunar trajectory.

——

~

* Alternatively, series for G directly in terms of S may
be employed, 1i.e.,

44 S
= o — +
U 3 + a5 7 RO o
and
H=10+q5



In connection with what is to be integrated, a variety of
methods for special perturbations have been developed. 1In effect,
however, all of these methods use some modification or combination of
the basic concepts characterized by (1) the integration of the total:
acceleration, as in Cowell's method, (2) integration of the departures
from a fixed reference orbit, as in Encke's method, and (3) integration
of the parameters of a varying reference orbit.

The Encke ephemeris program has been shown to be highly
efficient for lunar trajectories. The program has demonstrated its
ability to integrate trajectories to the moon with 15 integration
steps with less than five miles accumulated truncation error at impact.
Similar calculation with Cowell‘s method required almost 200 integra-
tion steps.

In the Encke orbit determination method only the departures
from a two-body reference orbit are integrated. The position at some
epoch (t) on the reference orbit is given by r . The deviatiomsof the
vehicle from the reference orbit can then be given as (see Fig.1l):

p =xr-r 2.2.1

e.

Considering one component we have the derivatives:

where
2
d Xq S #xe
d‘T2 : r3
e
X o=~ My
a5t e
dT
X' = perturbations
Finally

2 IR -
ﬂ_2€ o upd [ % T S F’ ¢ 143
de r \ X—® y.z
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FIG. 1 DEVIATION FROM REFERENCE ORBIT
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For small departures from the reference orbit, as in the case of lunar
trajectories, the first term on the right side of the above equation
is small and hence one integrates only slightly more than the %

term. The first term on the right side is normally developed into &'
series to avoid obtaining small differences of large quantities.

This series is developed in the following manner:

First, x = x, + ﬁ, etc,, are substituted into the defining
equation for r2

2 2 2 2
b i Y T
yielding

£ - (x, +&5" + (¥, s (z, + i

= r2+2[E(xe+1; )+ n (y, + 5+ 8z, +58) ]

e
2928 -
and q is taken to be
1
a= =5 [ (x,+56)+n (y +5n) + 8z, +30) ], 2.2.4
Te
so that equation 2.2.3 becomes
r o '
&) = 14+24q 2.2.5
e

The first term on the right-hand side of Equation 2.2.2 may
be expressed as

xe X 1 re : l
Salss 5 [1_(;_)]x_g, 2.2.6
r r r J

e e

where, applying Equation 2.2.5,
3
> = A+ 29)"%/? 2.2.7

-

11




Tren, using a binomial expansion, Encke's series is defined by

3 <3 .
r 3.5 2., 3.5*7
L-® = 1- (1+29 s o MR et
. fq 2.2.8
Finally, the substitution of Equations 2.2.6 and 2.2.8 into Equation
2.2.2 yields Encke's formula: '
2 2
2
46 _ HK  (fqx-E) + W%, tenl 2.2.9
2
du re3

The perturbative term X typically includes the second,
third, and fourth harmonics of the earth's gravitational potential and
the perturbations due to the sun and moon.

The procedure employed to calculate the position and veloc-
ity on the reference orbit from the unified parameters follows the pat-
tern developed in Section 2.1.



2.3 DIFFERENTIAL EXPRESSIONS

This section deals with the development of linear differential
expressions relating position and velocity to the unified orbit para-
meters introduced in Section 2.1. In Section 2.4, these relationships
will be extended to include observation residuals referred to topocentric
coordinates. In each of these operations, the algebraic manipulations
are tedious, but straightforward. The object of this present section
is vector relationships relating position and velocity increments A and
AL to increments in the parameters A'ﬁo, Al AP and AQ. 1In order to
remove redundancy, the latter two pqrametgrs will be developed in terms
of related quantities which recognize the unit property of the vector P
and the orthogonality of P and Qﬂ

Differential e~xpressions provide the link between observation
residuals and corrections to the parameters. The development starts
with the vectors of position and velocity:

y
w o
= P+ =Q 2:.3n1
o Np
£=xP+® q 2.3.2
W \’_p

where, for convenience, the coefficients of'§ will be denoted as § and
, respectively. Differentiation leads to:

AE:gAxw+§A§'+>$»/.\g+§'A9:" 883
Ag=gAiw+§A's"+ %, AR + 5 o8 2.3.4

13



2.3.1 Differential Expressions for,K Position and Velocity Components in
the Orbit Plane

In order to facilitate understanding of this differential
procedure, those derivatives in equations 2.3.3 and 2.3.4 which pertain
to the position and,velocity components in the orbit plane, i.e.,

D%y AT, A%, A%, will be derived first in terms of corrections

to the parameters. Subsequently, the differentials associated with
the expressions for the vectors defining the orientation of the orbit
plane will be discussed. The P and Q vectors both define the orienta-
tion and serve as the chosen axes of the orbit plane.

The position and velocity components in the orbit plane,
Xgy» Yo @nd Xy , Yo » respectively, are defined.

Xy = 9 -%
> 24 355
T-%-1¥
a
7/
scw=-“f-r‘-"§ 1
1 2.3.6
g i .Lly
r a

The differential expressions for Xy 32 *CD and §‘are ob-
tained from the differentiation of equations 2.3.% and 2.3.6:

Axw = Aq— Aa‘ 2.3‘7
=K -Lar-Tady 2.3.8
a v a
T ¢
A% =7 [rAr-AS] 2.3.9
P R e W
6y = -E [:Ac+c A +~/;£-Ar} 2.3.3%

where the various terms are defined below. The determination of AC
and AVY follows from the series:

14
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E

S o 'Y
R N R
I L
27 T oL ;g T e

Differentiating, we obtain

AY =% X -0 A

=3 a% -2 A(i)

where
® .2 8. 30
V=S "2 A2 -
e 29 3 4§
, Gl -ttt am -

From the formulae

g ]
1

differentiation yi

Ae =
and Axr =
or Ar =

q+eC,
elds
1 1
-q A (a) -aAq

Aq+eAT+TC Ae

es AR - €+ ey ad + -1 Tyag

15



Finally, the AX term is derived from the expressions for '

szﬁ;+ﬁ'(t-to)

g- q R’ + € iy
and their derivatives which follow

Aﬂ-Apfo since AN =0
AN =qgaX+eraT+Xaq+Tae

or AY:%AP(O+%(qﬁ'+effa)A(']a*)-%'§Aq

At this. point it is convenient to express Eq. 2.3.7-10 in
terms of A ﬂ'o, A(-;) and A q:

A%z?{maﬁo-ﬁiaq A(i—) +'5‘(qu 2.3.11
¥ =¥ AN+ %"’aq A(%) +'§q Ay 2.3.12 .
where s
X = -%¥/r; "iaq= X (el +qt+C; 'iq =1-% ¥
¥ .- 2/ Yo=Y ¥ +a® - @- L)
"§q= -é“m’s“ 2.3.13
and INE T S Y +§Vaq A(-};) +§q Aq 2.3.14
A3 "'gm Aﬁ’o +§aq A(%) +'§q Aq 2.8.15

16



where

d ,—r3 e

3(_:-\ s +2‘§'§
q 3 r

r r

. " ﬁm (éﬁa + qi) _Vﬂiéé (q€¢ + e Ea) +“f% - i-%;)

7 2.3.16

A S T
’gm = = ;2 ( ':L + e g) g‘q = -'§ S.’m - k/?
. . e r
”éaq=S’ (el +ql‘f)+%(qc+ee‘a)+'”’f (%?:a-%)
/

To more directly relate the Ay,
parameters, the quantity Aq is replaced by

Ap. Note that:
§-%=9
and § ap § AL 1 &P

Then, from the expressions relating p, q, e and 4

q = P/(1 + e)

e2= 1l - p/a
one obtains
2
1 3l 1
aq =% (34 0P) +%A(;)

17

lA'g, etc., to the chosen
2



The substitution of the last expression will alter equations
! 2.3.11-16 in the following manner:

1 1
: ax =¥ A +X AQ + B Gow 2.3.17
] ay ~ A% 1 4

SN Sm Aixo - Sap A(a) + Sp (ZAP) 2.3.18

o La¥]
where Xm and Sm remain as before, and

e Q¥ .
xap_)“\’aq+2e X 'Xp_e 'S(q ]
b 253119
3 =5 +% 3 s =‘L'§ J
ap aq 2e q P e ¢
and
4 - L 'l l . l
Ok = km A’Mo + Xap A ) +'3tp (749) 2.3.20 i
" 4 y 1 4
AS ="ém Aﬁo+“§apA () +'§p (zAp) 2.3.21 )
~ A
where again Xm and S remain unchanged and
g i 2L -
Yok -4 £ -1 E
ap aqg 2 q P e ¢q
: S 2.3.22
g =’\S’ "‘L '§’ ng =L g
ap aq 2e q P e q
J

Equations 2.3.17, 18, 20, 21 thus give expressionsfor A 5 Ag,
A%, s AS, which sre different for each obse{vation date, in terms of
corrections to the elements, AMO, A(-) and

18 v



2.3.2 Differential Relationships Extended to the Orientation of the

Orbit Plane

The orientation of the orbit plane is defined by P, a unit
vector directed toward perigee, and Q, a vector normal to P in a sense
determined by the direction of motion. To avoid the indeterminate
behavior of Q for rectilinear motion, the vector

§=- vr a,

has been considered in this development.

The reduction of the six components of & P and AQ to fewer
quantities leads to a definition of P in terms of its right ascension
a* and declination *. From these the unit vectors A* and D%, ortho-
gonal to P (see Fig. 2) are calculated.

P_ = cos 6% cos g *
P Py = cos §* sin g*
= *
L Pz sin §
* = = *
Ax sin

A¥* A * = cos g%

T 5
* =
A*x=0
Dx* = - 8in g% cos g¥*

D* D * = - sin §* sing*

=
*
|

= cos §%

19



Equator

ol

5*
(=4

FIGURE 2
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The differentiation of P, A* and D* yields

AP = A% cos &% Aa* + Dk Ad * 2.3.23

n

AA*

-B cos 6% Aq* + D* sin g% pq*

AD*

-A% sing* Aq* - P A5 *

The angle @*, as shown in Fig. 2, allows us to derive the
following relationships.

Q = A* coa P* + D* sin @*

1=

=-A* sin §* + D* cos P*

¥o?

= A% c* + D¥ g* 2.3.24

where
c* = ,/p cos P*

s* = ,/p sin @*

The differential expression for § becomes
A = A% Ack 4+ Dk A sk + WXAq * + P Ap* 2.3.25

where

=
*
|

W* = c* (D* sin §* - P cos §*) - s* A% sin g%

-]
*
|

= -_li g%

21



A further reduction of unknowns in the expressions for
A Xy A'§, A:'cw and AY is carried out by noting that

'§° § = lz'Ap-C* AC*+S*A s* 203026

Incorporating equation 2,3,26 into equations 2.3,17-22 and
substituting these along with equations 2.3.23 and 25 into equations
2.3.3 and 4 gives the following, formulge for, Ar gnd At ip terms of
six unknowns, namely, A'Mo, A(;'), Ao, A , Ac and As .

N Al 5
Ar = [RX +YS) AR+ X +TT ] AR Be3. &
+ [ @¥ +9%) +a4"F JAc”
P X o) tA
+ ["@% +38) +0° % las”

P P

+ [A X, ¢os 6*+E*§'] Aa*+[2*xw +g_*§'] Ag

and
At = [g?(m+'§§’m]Ai¥o+ [g'i(ap+§"§‘ap] A(%) 2.3.28
+ [ @% +3s) +a"§ 1At
P P
T (g§p+§§p)+g*'§]As*
+ (8" &, cos 8™ +w* ¥ 14d + [D° &, +2°§ a8

: * *

The explicit derivation of & and & 1is avoided by
expressing the involved quantities A* and D* in terms of the given
components of P:

22



*
Az = 0
2 2 1/2
Dz - (Px + Py )
*
Ax = -Py/Dz
*
Ay = Px/D
* *
Dx = -Ay Pz
* *
D Eedt A P
y X z

* *
It is obvious from Fig. 2 and Eq. 2.3.24 that ¢ and s may

be obtained from the following dot products:

* *
- a =c¢
~ * %*
QD =

This completes the derivation of the differential expressions. In the
following section, the topocentric coordinates of the observer are
introduced, and scalar differential expressions between parameters and
residuals in the observed quantities are derived. Details of the structure
of the IBM-709 program are reserved to Sect. 3.

3

2.4 TOPOCENTRIC RESIDUALS

The position of the vehicle referred to the observer is
related to the positions of the observer, R, and of the vehicle, r,
both referred to the dynamical center by the fundamental expression.

£ = 4+R = pL 2.4.1

23
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where L is a unit vector. (See Fig. 3)

The differential relationships relating residuals in the
observed position to improvements of the orbital elements are embodied
in the derivative of equation 2.4.1,

fp = A (pL) = po L+ pAL = AX . 2.4,2

It is assumed that there is no requirement for correcting the station
vector, R. The previous section developed an expression for fAp in
terms of corrections to the orbital parameters. In this section

is translated into differential expressions involving residuals in the
observations. In the discussion to follow, let the subscript c signify
that the particular quantity is computed, that is, obtained from the
representation, whereas no subscript denotes an observed quantity. The
residuals will be taken in the sense "observed-minus-computed."

The observations considered in this study are p, A and h,

®and 5, and p . The differential correction program processes any
combination and number of these observed quantities taken one at a
time., This implies that although a complete set of observations may
be available, for example, A, h and p, such that the components of 4p
could be obtained directly, the more general method employed in the
differential correction program considers each piece of information
without regard to the others. This procedure allows incomplete data
to be processed and, furthermore, permits independent weighting or
rejection of the data components.

First, if only one or two of the a, 5, and/or p are available
it will be useful to define the auxiliary unit vectors A and D (Fig. 4)
which form an orthogonal set with L. D is the north-pointing tangent
to the celestial meridian at the point " toward which L is directed. A
is also tangent to the celesiial sphere at the same point and parallel
to the equator plane so that it completes the right~handed orthogonal
set L, A, and D. The cowmponents of L, A, and D are

L = cos B cos a 1

X
Ly = cos & sin @ > L 2.4.3
L, =« sin B,

z J
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Ax = -gin ¢ )
A - X
y cos Q4 }é 2.4.4
Az =0,
/
and
D = -8in § cos a\
X
Dy = -sin & sin @ § D 2.4.5

D, = cos &,

where g and & are the topocentric right ascension and declination of the
object. 1In additionm, L. is determined from

L. = e, i Pe 2.4.6
where
g, =L+R
and
2 »
Pe * £¢ "Bg

For angular observations, the residuals in the direction
cosines, AL, are obtained from

AL =L -L
S

Also it can be seen from Fig. 4 that
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AL_:éAQﬂOBS-i—P_AS 2.4,7

Successive dot products of AL with A and D will lead to scalar differ-
ential expressions for A acos 5, and A5, respectively.

AL © A = AQcos B, 2.4.8

AL - D = /B 2.4.9

Similarly, the dot product of Ap with Lc relates a slant-range residual
No to improvements of the orbit parameters.

Lp+ L. = Lo, 2.4.10

Differential expressions involving observations in a horizon-
oriented coordinate system may be obtained in a similar manner by
defining the horizon system unit vector triad L, A, and D, whose
components are:

«h ="cos A cos hw

Lyh = sin Acos h } L 2.4.11 T
L, = sinh, J

Y]

Ay = sinA )

~

Ayh = cos A } '_K 2.4.12

~o

Azh £ 0,

and
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T WP e — T ;‘-H‘

i i

~

th z cos A sin h

'I\)‘ z-sin A sin h > B 2.4.13
yh *

~

D, = cos h,

where h is the altitude or elevation angle and A is the azimuth,
measured in the positive sense to the east from north. These horizon
system components are rotated into the equatorial system, to which
the components of Ap are referred by

\
Ly = Lyn S+ Lyh Ee+ Lan %
~ ~ ~ ~
A z # =5 Gk
x S An St ALET A2 . (x—ey, 2.) 2.4.14

2
oo
2

Z

s
Dy = Dy S+ yh Ext Dan %o

x xh

The components of the auxiliary unit vectors S, E and Z, directed to
the south, east, and zenith, respectively, are

Sx s sin P cos 6 )

S, = sin » sin 8 (| S 2ol 15
s, = -cos ¢ , |

E. = -sin 6

x

Ey = cos © N E 2.4.16
Ez =0,
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and

Zx = cos ¢ cos 6 )
Zy = cos ? sin @ \ Z 2.4,17
Z = sin 9 ’

% /

where ? is the observer's astronomical latitude and 6 is the local hour
angle of the vernal equinox. Then

AL =X AAcosh 4+ B oh. . 2.4.18

Scalar differential expressions for A A cs h, and Ah can now
be obtained by forming the dot products of AL with A and D, respectively:

~

AL * A= A cos h 2.4.19

and

~y
AL + D = Ah, 2.4.20

Thus, residuals in the observations of angular position in the har izon
coordinate system can be related to corrections to the orbit parameters
through Ap.

Range-rate residuals A can be related to the parameters

through
pelp=pAp 2.4.21
g +pLp=plADL+ PO 2.4.22
ot 26 s av ek vip -% &l M 2.4.23

The corrections to the orbit parameters are introduced through 2p and
£) as developed in Sect. 2.3.
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SECTION 3
EXPERIMENTATION

The unified ephemeris and differential correction theory
has been subjected to experimental verification to determine the
. rcuracy and rate of convergence with various types of simulatei obzervationms.

EPHEMERIS PROGRAM

The numerical integration program was checked against the
Encke Moonshot program. The major differences between the two methods
are the choice of parameters used to define the two-body reference
orbit and the argument used for the numerical integration, i.e., time
for the unified Encke program and eccentric anomaly, E, for the Encke
Moonshot program. The results of the comparison are listed in Table

i1

Further experimentation is being conducted to determine
integration step-size, time for integration, etc.

DIFFERENTIAL CORRECTION PROGRAM

The program has been verified by correcting a hyperbolic
orbit to one that is elliptical with various combinations of range
and angle data. Tables 2 through 4 give the sizes of the r. m,s.,
residuals and list the values of the parameters M , 1 P and g after
each of four corrections. The results of Table 2°wefe based on 32
range observations spaced over 7 hours and 18 minutes. Over the
same time-span, Table 3 involves 15 observations of %and & and 17
observations of A and h, and the same number of angular observations
were used with 32 range observations in Table 4. Table 5 is a
reproduction of the program listing of the residuals in the range and
angular observations after one correction.

31
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Further verification of' the program was carried out by
correcting from an elliptic to a parabolic orbit and from a hyperbolic
to a parabolic orbit. The success of this experimentation, orbit
correction through unit eccentricity, satisfies the definition of the
unified theory., Tables 6, 7 and 8 list. the values of the parameters
for the elliptic case and the r.m.s. residuals in the observationms
after each correction for both the elliptic and hyperbolic rums.

In all cases the observations were obtained over a 6 hour and 42 min,
period. Thirty-two range observations were used in Table 6, 13 sets
of ®and & and 15 sets of A and h for Table 7, and a combination of

32 range, 13 o and d and 14 A and h observations are included in Table
8. Tables 9 through 12 demonstrate the use of the program with range
rate simulated observations.
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